Ruled surfaces in $E^{3}$ with density
In the present paper, we study curves in $\mathbb{E}^{3}$ with density $e^{ax^{2}+by^{2}},$ where $a,b\in \mathbb{R}$ not all zero constants and give the parametric expressions of the curves with vanishing weighted curvature. Also, we create ruled surfaces whose base curves are the curve with vanish...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2019, 41(4), , pp.683-695 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we study curves in $\mathbb{E}^{3}$ with density $e^{ax^{2}+by^{2}},$ where $a,b\in \mathbb{R}$ not all zero constants and give the parametric expressions of the curves with vanishing weighted curvature. Also, we create ruled surfaces whose base curves are the curve with vanishing weighted curvature and the ruling curves are Smarandache curves of this curve. Then, we give some characterizations about these ruled surfaces by obtaining the mean curvatures, Gaussian curvatures, distribution parameters and striction curves of them. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-293X 2288-6176 |