Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2019, 51(8), , pp.1871-1885
Hauptverfasser: Du, Xianan, Choe, Jiwon, Choi, Sooyoung, Lee, Woonghee, Cherezov, Alexey, Lim, Jaeyong, Lee, Minjae, Lee, Deokjung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2019.06.010