Low-complexity MIMO detection algorithm with adaptive interference mitigation in DL MU-MIMO systems with quantization error
In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfec...
Gespeichert in:
Veröffentlicht in: | Journal of communications and networks 2016, 18(2), , pp.210-217 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfect precoding matrix caused by quantization error of the CSI feedback, the station receives the desired signal as well as the residual interference signal. Therefore, a complex MIMO detection algorithm with interference mitigation is required for mitigating the residual interference. To reduce the computational complexity, we propose a MIMO detection algorithm with adaptive interference mitigation. The proposed algorithm adaptively mitigates the residual interference by using the maximum likelihood detection (MLD) error criterion (MEC). We derive a theoretical MEC by using the MLD error condition and a practical MEC by approximating the theoretical MEC. In conclusion, the proposed algorithm adaptively performs interference mitigation when satisfying the practical MEC. Simulation results show that the proposed algorithm reduces the computational complexity and has the same performance, compared to the generalized sphere decoder, which always performs interference mitigation. |
---|---|
ISSN: | 1229-2370 1976-5541 |
DOI: | 10.1109/JCN.2016.000030 |