비모수 방법을 사용한 영상 잡음 제거 알고리즘
영상처리 분야에서 중요한 분야인 잡음 제거는 통계적인 접근이 필요하지만 잡음에 대한 특정한 분포를 가정하기 어려우며 지역적 특징을 반영하는 공간 필터는 소표본에 해당하므로 모수적인 방법으로 접근할 수 없다. 1차 영상 미분과 2차 영상 미분은 영상에 포함된 잡음 수준에 따라 확연한 차이를 보이며 캐니 에지 검출기를 사용하면 보다 명확히 알 수 있다. 잡음 수준을 통계적으로 확인하고자 Fligner-Killeen 검정을 진행하고 붓스트랩 방법을 사용하였으며 추정된 잡음의 수준을 베타분포의 누적분포함수를 이용하여 0과 1사이의 값을 갖...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2019, 32(5), , pp.721-740 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 영상처리 분야에서 중요한 분야인 잡음 제거는 통계적인 접근이 필요하지만 잡음에 대한 특정한 분포를 가정하기 어려우며 지역적 특징을 반영하는 공간 필터는 소표본에 해당하므로 모수적인 방법으로 접근할 수 없다. 1차 영상 미분과 2차 영상 미분은 영상에 포함된 잡음 수준에 따라 확연한 차이를 보이며 캐니 에지 검출기를 사용하면 보다 명확히 알 수 있다. 잡음 수준을 통계적으로 확인하고자 Fligner-Killeen 검정을 진행하고 붓스트랩 방법을 사용하였으며 추정된 잡음의 수준을 베타분포의 누적분포함수를 이용하여 0과 1사이의 값을 갖도록 하였다. 본 연구에서는 영상에 포함된 잡음 수준을 고려하는 잡음 제거 알고리즘을 제시하고자 한다.
Noise reduction is an important field in image processing and requires a statistical approach. However, it is difficult to assume a specific distribution of noise, and a spatial filter that reflects regional characteristics is a small sample and cannot be accessed in a parametric manner. The first order image differential and the second order image differential show a clear difference according to the noise level included in the image and can be more clearly understood using the canyon edge detector. The Fligner-Killeen test was performed and the bootstrap method was used to statistically check the noise level. The estimated noise level was set between 0 and 1 using the cumulative distribution function of the beta distribution. In this paper, we propose a nonparametric noise reduction algorithm that accounts for the noise level included in the image. |
---|---|
ISSN: | 1225-066X 2383-5818 |