Strong compatibility in certain quasigroup nonuniform homogeneous spaces of degree 4

We consider quasigroups $Q(\Gamma)$ obtained as certain double covers of the symmetric group $S_3$ of degree 3, for directed graphs $\Gamma$ on the vertex set $S_3$. We completely characterize the strong compatibility of elements of $Q(\Gamma)$ for any quasigroup nonuniform homogeneous space of degr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Honam mathematical journal 2019, 41(3), , pp.595-607
Hauptverfasser: 임복희, Ji-Young Ryu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider quasigroups $Q(\Gamma)$ obtained as certain double covers of the symmetric group $S_3$ of degree 3, for directed graphs $\Gamma$ on the vertex set $S_3$. We completely characterize the strong compatibility of elements of $Q(\Gamma)$ for any quasigroup nonuniform homogeneous space of degree 4. For such homogeneous spaces, we classify all the strong and weak compatibility graphs of $Q(\Gamma)$. KCI Citation Count: 0
ISSN:1225-293X
2288-6176
DOI:10.5831/HMJ.2019.41.3.595