Strong compatibility in certain quasigroup nonuniform homogeneous spaces of degree 4
We consider quasigroups $Q(\Gamma)$ obtained as certain double covers of the symmetric group $S_3$ of degree 3, for directed graphs $\Gamma$ on the vertex set $S_3$. We completely characterize the strong compatibility of elements of $Q(\Gamma)$ for any quasigroup nonuniform homogeneous space of degr...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2019, 41(3), , pp.595-607 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider quasigroups $Q(\Gamma)$ obtained as certain double covers of the symmetric group $S_3$ of degree 3, for directed graphs $\Gamma$ on the vertex set $S_3$. We completely characterize the strong compatibility of elements of $Q(\Gamma)$ for any quasigroup nonuniform homogeneous space of degree 4. For such homogeneous spaces, we classify all the strong and weak compatibility graphs of $Q(\Gamma)$. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-293X 2288-6176 |
DOI: | 10.5831/HMJ.2019.41.3.595 |