Geometric representations of finite groups on real toric spaces

We develop a framework to construct geometric representations of finite groups $G$ through the correspondence between real toric spaces $X^\R$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the $G$-module structure of the homology of $X^\R$. As applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2019, 56(5), , pp.1265-1283
Hauptverfasser: 조수진, 최수영, Shizuo Kaji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a framework to construct geometric representations of finite groups $G$ through the correspondence between real toric spaces $X^\R$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the $G$-module structure of the homology of $X^\R$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type~$A$ and $B$, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j180646