Geometric representations of finite groups on real toric spaces
We develop a framework to construct geometric representations of finite groups $G$ through the correspondence between real toric spaces $X^\R$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the $G$-module structure of the homology of $X^\R$. As applicat...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2019, 56(5), , pp.1265-1283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a framework to construct geometric representations of finite groups $G$ through the correspondence between real toric spaces $X^\R$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the $G$-module structure of the homology of $X^\R$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type~$A$ and $B$, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties. KCI Citation Count: 0 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j180646 |