An experiment analysis of MILD combustion with liquid fuel spray in a combustion vessel
Mild combustion is characterized by its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise, and thermal stress. Recently, many studies have revealed the potential of MILD combustion in various power systems but most studies have been fo...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2019, 33(8), , pp.3717-3724 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mild combustion is characterized by its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise, and thermal stress. Recently, many studies have revealed the potential of MILD combustion in various power systems but most studies have been focused on gas phase fuel MILD combustion. Therefore, further study on MILD combustion using liquid fuel is needed for the application to a liquid-fueled gas turbine especially. In this work, we studied experimentally on the formation of liquid fuel MILD combustion under the condition of high dilution by burnt gas generated from a first premixed flame in two stages combustor which consists of the first premixed burner and secondary combustor. In particular, the effects of burnt gas velocity and oxygen level of burnt gas on the formation of liquid fuel MILD combustion were investigated. The results show that as the burnt gas velocity through the nozzle becomes higher, the color of flames was changed from yellow to pale blue and flames became very short. The OH radical measured by ICCD camera was uniformly distributed on the pale blue flame surface and its intensity was very low compared to conventional liquid diffusion flame. As burnt gas velocity is increased, local high-temperature region appeared to be diminished and the flame temperature became spatially uniform. And CO emission was sampled around 1 ppm and NOx emission was measured around 10 ppm under the overall equivalence ratio of 0.8 to 0.98 for 40 mm or less diameter of velocity control nozzle. This low NOx emission seems to be attributed to maintaining the average temperature in secondary combustor below the threshold temperature of thermal NOx formation. In view of the uniform temperature distribution, low OH radical intensity and low NOx emission data in the secondary combustor, formation of stable MILD combustion using kerosene liquid fuel could be verified at high burnt gas velocity. |
---|---|
ISSN: | 1738-494X 1976-3824 |
DOI: | 10.1007/s12206-019-0713-3 |