공간 클래스 단순화를 이용한 의미론적 실내 영상 분할
본 논문에서는 실내 공간 이미지의 의미론적 영상 분할을 위해 배경과 물체로 재설계된 클래스를 학습하는 방법을 제안한다. 의미론적 영상 분할은 이미지의 벽이나 침대 등 의미를 갖는 부분들을 픽셀 단위로 나누는 기술이다. 기존 의미론적 영상 분할에 대한 연구들은 신경망을 통해 이미지의 다양한 객체 클래스들을 학습하는 방법들을 제시해왔고, 긴 학습 시간에 비해 정확도가 부족하다는 문제가 지적되었다. 그러나 물체와 배경을 분리하는 문제에서는, 다양한 객체 클래스를 학습할 필요가 없다. 따라서 우리는 이 문제에 집중해, 클래스를 단순화 후에...
Gespeichert in:
Veröffentlicht in: | Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2019, 20(3), , pp.33-41 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 본 논문에서는 실내 공간 이미지의 의미론적 영상 분할을 위해 배경과 물체로 재설계된 클래스를 학습하는 방법을 제안한다. 의미론적 영상 분할은 이미지의 벽이나 침대 등 의미를 갖는 부분들을 픽셀 단위로 나누는 기술이다. 기존 의미론적 영상 분할에 대한 연구들은 신경망을 통해 이미지의 다양한 객체 클래스들을 학습하는 방법들을 제시해왔고, 긴 학습 시간에 비해 정확도가 부족하다는 문제가 지적되었다. 그러나 물체와 배경을 분리하는 문제에서는, 다양한 객체 클래스를 학습할 필요가 없다. 따라서 우리는 이 문제에 집중해, 클래스를 단순화 후에 학습하는 방법을 제안한다. 학습 방법의 실험 결과로 기존 방법들보다 정확도가 약 5~12% 정도 높았다. 그리고 같은 환경에서 클래스를 달리 구성했을 때 학습 시간이 약 14 ~ 60분 정도 단축됐으며, 이에 따라 물체와 배경을 분리하는 문제에 대해 제안하는 방법이 효율적임을 보인다.
In this paper, we propose a method to learn the redesigned class with background and object for semantic segmentation of indoor scene image. Semantic image segmentation is a technique that divides meaningful parts of an image, such as walls and beds, into pixels. Previous work of semantic image segmentation has proposed methods of learning various object classes of images through neural networks, and it has been pointed out that there is insufficient accuracy compared to long learning time. However, in the problem of separating objects and backgrounds, there is no need to learn various object classes. So we concentrate on separating objects and backgrounds, and propose method to learn after class simplification. The accuracy of the proposed learning method is about 5 ~ 12% higher than the existing methods. In addition, the learning time is reduced by about 14 ~ 60 minutes when the class is configured differently In the same environment, and it shows that it is possible to efficiently learn about the problem of separating the object and the background. |
---|---|
ISSN: | 1598-0170 2287-1136 |
DOI: | 10.7472/jksii.2019.20.3.33 |