주거용 건물의 전력 사용량에 대한 시계열 분석 및 예측

얼마나 많은 에너지를 사용하느냐에 대한 예측은 사회에서 중요한 이슈이다. 특히 주거 건물은 건물의 특성상 다른 건물에 비해 예측하기 힘들다. 본 논문에서는 주거용 건물의 전력 사용량에 대한 시계열 분석의 방법들을 설명하고자 한다. 일반적으로 온도는 전력 사용량과 밀접한 관련이 있다고 알려져 있다. 변수들 사이에 공적분 관계가 존재한다면, 시간에 따른 오차를 조정하는 방법인 오차수정모형을 적용한다. 전력 사용량과 온도를 포함한 변수들 사이에 공적분 관계가 있음을 보이고, 새로운 온도 반응 함수를 정의하여 온도 효과를 고려한 오차수정모...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ŭngyong tʻonggye yŏnʼgu 2019, 32(3), , pp.405-421
Hauptverfasser: 박경미, Kyeongmi Park, 김재희, Jaehee Kim
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:얼마나 많은 에너지를 사용하느냐에 대한 예측은 사회에서 중요한 이슈이다. 특히 주거 건물은 건물의 특성상 다른 건물에 비해 예측하기 힘들다. 본 논문에서는 주거용 건물의 전력 사용량에 대한 시계열 분석의 방법들을 설명하고자 한다. 일반적으로 온도는 전력 사용량과 밀접한 관련이 있다고 알려져 있다. 변수들 사이에 공적분 관계가 존재한다면, 시간에 따른 오차를 조정하는 방법인 오차수정모형을 적용한다. 전력 사용량과 온도를 포함한 변수들 사이에 공적분 관계가 있음을 보이고, 새로운 온도 반응 함수를 정의하여 온도 효과를 고려한 오차수정모형을 적용하고자 한다. Predicting how much energy to use is an important issue in society. However, it is more difficult to capture the usage characteristics of residential buildings than other buildings. This paper provides time series analysis methods for electricity consumption in a residential building. Temperature is closely related to electricity demand. An error correction model, which is a method of adjusting the error with time, is applied when a cointegration relation is established between variables. Therefore, we analyze data via ECMs with consideration of the temperature effect.
ISSN:1225-066X
2383-5818