Upregulated expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines

The mechanism of resistance to cisplatin during treatment of bladder cancer (BC) has been a subject of intense investigation in clinical research. This study aims to identify candidate genes associated with resistance to cisplatin, in order to understand the resistance mechanism of BC cells to the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative and clinical urology 2016, 57(1), , pp.63-72
Hauptverfasser: Kim, Sung Han, Ho, Jin-Nyoung, Jin, Hyunjin, Lee, Sang Chul, Lee, Sang Eun, Hong, Sung-Kyu, Lee, Jeong Woo, Lee, Eun-Sik, Byun, Seok-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of resistance to cisplatin during treatment of bladder cancer (BC) has been a subject of intense investigation in clinical research. This study aims to identify candidate genes associated with resistance to cisplatin, in order to understand the resistance mechanism of BC cells to the drug, by combining the use of microarray profiling, quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. The cisplatin sensitive human BC cell line (T24) and the cisplatin resistant BC cell line, T24R2, were used for microarray analysis to determine the differential expression of genes that are significant in cisplatin resistance. Candidate upregulated genes belonging to three well-known cancer-related KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (p53 tumor suppressor, apoptosis, and cell cycle) were selected from the microarray data. These candidate genes, differentially expressed in T24 and T24R2, were then confirmed by quantitative RT-PCR and western blot. A fold change ≥2 with a p-value
ISSN:2466-0493
2466-054X
DOI:10.4111/icu.2016.57.1.63