Module amenability of Banach algebras and semigroup algebras
We define the concepts of the first and the second module dual of a Banach space $X$. And also bring a new concept of module amenability for a Banach algebra $\mathcal{A}$. For inverse semigroup $S$, we will give a new action for $\ell^1(S)$ as a Banach $\ell^1(E_S)$-module and show that if $S$ is a...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2019, 41(2), , pp.357-368 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the concepts of the first and the second module dual of a Banach space $X$. And also bring a new concept of module amenability for a Banach algebra $\mathcal{A}$.
For inverse semigroup $S$, we will give a new action for $\ell^1(S)$ as a Banach $\ell^1(E_S)$-module and show that if $S$ is amenable then $\ell^1(S)$ is $\ell^1(E_S)$-module amenable. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-293X 2288-6176 |
DOI: | 10.5831/HMJ.2019.41.2.357 |