AMPK alleviates high uric acid-induced Na+-K+-ATPase signaling impairment and cell injury in renal tubules
One of the mechanisms in hyperuricemia (HUA)-induced renal tubular injury is the impairment of Na + -K + -ATPase (NKA) signaling, which further triggers inflammation, autophagy, and mitochondrial dysfunction and leads to cell injury. Here, we used RNA sequencing to screen the most likely regulators...
Gespeichert in:
Veröffentlicht in: | Experimental & molecular medicine 2019, 51(0), , pp.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the mechanisms in hyperuricemia (HUA)-induced renal tubular injury is the impairment of Na
+
-K
+
-ATPase (NKA) signaling, which further triggers inflammation, autophagy, and mitochondrial dysfunction and leads to cell injury. Here, we used RNA sequencing to screen the most likely regulators of NKA signaling and found that the liver kinase B1(LKB1)/adenosine monophosphate (AMP)-activated protein kinase (AMPK)/ mammalian target of rapamycin (mTOR) pathway was the most abundantly enriched pathway in HUA. AMPK is a key regulator of cell energy metabolism; hence, we examined the effect of AMPK on HUA-induced dysregulation of NKA signaling and cell injury. We first detected AMPK activation in high uric acid (UA)-stimulated proximal tubular epithelial cells (PTECs). We further found that sustained treatment with the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), but not the AMPK inhibitor Compound C, significantly alleviated UA-induced reductions in NKA activity and NKA α1 subunit expression on the cell membrane by reducing NKA degradation in lysosomes; sustained AICAR treatment also significantly alleviated activation of the NKA downstream molecules Src and interleukin-1β (IL-1β) in PTECs. AICAR further alleviated high UA-induced apoptosis, autophagy, and mitochondrial dysfunction. Although AMPK activation by metformin did not reduce serum UA levels in hyperuricemic rats, it significantly alleviated HUA-induced renal tubular injury and NKA signaling impairment in vivo with effects similar to those of febuxostat. Our study suggests that AMPK activation may temporarily compensate for HUA-induced renal injury. Sustained AMPK activation could reduce lysosomal NKA degradation and maintain NKA function, thus alleviating NKA downstream inflammation and protecting tubular cells from high UA-induced renal tubular injury.
Kidney damage: Identifying mechanisms behind uric acid effects
High serum levels of uric acid cause kidney tissue damage through cellular processes that have now been identified by researchers in China. Uric acid is a common component of urine, but causes damage if it is present in high levels in the blood (hyperuricemia). While investigating the mechanisms behind hyperuricemia, Zhibin Ye and co-workers at Fudan University in Shanghai recently showed that impairment of the Na
+
-K
+
-ATPase (NKA) signaling pathway, which regulates uric acid transportation through the kidneys, is a crucial feature of renal damage progr |
---|---|
ISSN: | 1226-3613 2092-6413 |
DOI: | 10.1038/s12276-019-0254-y |