Molecular evolution of ACTIN RELATED PROTEIN 6, a component of SWR1 complex in Arabidopsis

To date, it has been assumed that the evolution of a protein complex is different from that of other proteins. However, there have been few evidences to support this assumption. To understand how protein complexes evolve, we analyzed the evolutionary constraints on ACTIN RELATED PROTEIN 6 (ARP6), a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant biology = Singmul Hakhoe chi 2016, 59(5), , pp.467-477
Hauptverfasser: Seo, Eunjoo, Park, Chulmin, Choi, Kyuha, Lee, Dongseon, Seok, Chaok, Lee, Ilha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To date, it has been assumed that the evolution of a protein complex is different from that of other proteins. However, there have been few evidences to support this assumption. To understand how protein complexes evolve, we analyzed the evolutionary constraints on ACTIN RELATED PROTEIN 6 (ARP6), a component of the SWR1 complex. Interspecies complementation experiments using transgenic plants that ectopically express trans ARP6s (ARP6s from other organisms) showed that the function of ARP6s is conserved in plants. In addition, a yeast two-hybrid analysis revealed that this functional conservation depends on its ability to bind with both PIE1 and AtSWC6. ARP6 consists of 4 domains similar to actin. Functional analysis of chimeric ARP6s (domain-swapped ARP6s between Arabidopsis and mouse) demonstrated that each domain of ARP6s imposes differential evolutionary constraints. Domains 1 and 3 of ARP6 were found to interact with SWC6 and PIE1, respectively, and domain 4 provides a nuclear localization signal. Moreover, domains 1 and 3 showed a slower evolution rate than domain 4, indicating that the interacting domains have higher evolutionary constraints than non-interacting domains do. These findings suggest that the components of this protein complex have evolved coordinately to preserve their interactions.
ISSN:1226-9239
1867-0725
DOI:10.1007/s12374-016-0197-y