Analytic Signal-Based Causal Network Estimator for Hemodynamic Signal Analysis in the Brain

The connectivity and the causality were estimated using functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy ( f -NIRS) signals to introduce an optimal networks analysis technique for hemodynamic signals. Instantaneous phase information was utilized to analyze the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2019, 74(9), , pp.847-854
Hauptverfasser: Park, Jang-Woo, Lee, Gihyoun, Kim, Beop-Min, Chang, Yongmin, Jung, Young-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The connectivity and the causality were estimated using functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy ( f -NIRS) signals to introduce an optimal networks analysis technique for hemodynamic signals. Instantaneous phase information was utilized to analyze the fMRI time series and the f -NIRS signals in order to estimate connectivity and causal networks in the brain. To identify an optimal estimator, the conducted computer-based Monte Carlo simulation using fMRI mimicking signals under various realistic conditions. The simulation results showed that the phase-information-based approach can be an optimal causal estimator for hemodynamic signals.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.74.847