부분 AUC와 최적분류점들
ROC와 CAP 곡선을 이용하여 다양한 정확도 측도를 바탕으로 최적분류점을 추정하는 많은 연구가 있다. 본 연구에서는 ROC와 CAP 곡선의 특정한 부분 면적을 나타내는 대안적인 통계량을 제안한다. 새롭게 정의된 부분 면적을 나타내는 통계량의 미분방정식을 이용하여 ROC와 CAP 함수와의 관계를 살펴보고, 다음으로는 ROC와 CAP 곡선에 대한 다양한 정확도 측도들의 조건에서의 최적분류점과의 관계를 유도한다. 혼합분포를 구성하는 두 종류의 분포함수를 다양한 정규분포로 가정하여 최적분류점을 설정하고, 다양한 정확도 측도들의 조건에서의...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2019, 32(2), , pp.187-198 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ROC와 CAP 곡선을 이용하여 다양한 정확도 측도를 바탕으로 최적분류점을 추정하는 많은 연구가 있다. 본 연구에서는 ROC와 CAP 곡선의 특정한 부분 면적을 나타내는 대안적인 통계량을 제안한다. 새롭게 정의된 부분 면적을 나타내는 통계량의 미분방정식을 이용하여 ROC와 CAP 함수와의 관계를 살펴보고, 다음으로는 ROC와 CAP 곡선에 대한 다양한 정확도 측도들의 조건에서의 최적분류점과의 관계를 유도한다. 혼합분포를 구성하는 두 종류의 분포함수를 다양한 정규분포로 가정하여 최적분류점을 설정하고, 다양한 정확도 측도들의 조건에서의 최적분류점에 대응하는 제1종과 제2종 오류의 크기를 탐색하고 토론한다.
Extensive literature exists on how to estimate optimal thresholds based on various accuracy measures using receiver operating characteristic (ROC) and cumulative accuracy profile (CAP) curves. This paper now proposes an alternative measure to represented the specific partial area under the ROC and CAP curves. The relationship between ROC and CAP functions is examined using differential equations of the new defined partial area under curves. In addition, the relationship with the optimal thresholds under conditions of various accuracy measures for the ROC and CAP functions is also derived. We assume there are two kinds of distribution functions composing the mixed distribution as various normal distributions before finding the optimal thresholds. Corresponding type 1 and 2 errors are also explored and discussed under various conditions for accuracy measures. |
---|---|
ISSN: | 1225-066X 2383-5818 |