Certain integration formulae for the generalized $k$-Bessel functions and Deleure hyper-Bessel function

Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi {\it et al.}~\cite{Ch-Ag, Ch-Ku-Pu}. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized $k$-Bessel functions. Also, we con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2019, 34(2), , pp.523-532
1. Verfasser: 김용섭
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi {\it et al.}~\cite{Ch-Ag, Ch-Ku-Pu}. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized $k$-Bessel functions. Also, we consider some integral formulas of the $(p, q)$-extended Bessel functions $J_{\nu,p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of $(p, q)$-extended generalized hypergeometric functions, and the generalized Wri\-ght hypergeometric functions, respectively. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c180147