Certain integration formulae for the generalized $k$-Bessel functions and Deleure hyper-Bessel function
Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi {\it et al.}~\cite{Ch-Ag, Ch-Ku-Pu}. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized $k$-Bessel functions. Also, we con...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2019, 34(2), , pp.523-532 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi {\it et al.}~\cite{Ch-Ag, Ch-Ku-Pu}. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized $k$-Bessel functions. Also, we consider some integral formulas of the $(p, q)$-extended Bessel functions $J_{\nu,p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of $(p, q)$-extended generalized hypergeometric functions, and the generalized Wri\-ght hypergeometric functions, respectively. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-1763 2234-3024 |
DOI: | 10.4134/CKMS.c180147 |