Crustal Uplift and Microseismic Activity around Syowa Station, Antarctica
There is a great deal evidence concerning crustal uplift, after deglaciation, in the vicinity of Syowa Station $(69^{\circ}S,\;39^{\circ}E)$ from tide gauge data, seismic evidence, raised beaches, marine terraces, etc. The geomorphological and tide gauge data show that the crustal uplift is going on...
Gespeichert in:
Veröffentlicht in: | Ocean and polar research 2002, 24(3), , pp.249-253 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a great deal evidence concerning crustal uplift, after deglaciation, in the vicinity of Syowa Station $(69^{\circ}S,\;39^{\circ}E)$ from tide gauge data, seismic evidence, raised beaches, marine terraces, etc. The geomorphological and tide gauge data show that the crustal uplift is going on around Syowa Station. Seismic observations at Syowa Station started in 1959. Phase readings of the earthquakes have been published by National Institute of Polar Research once a year since 1968, as one of the Data Report Series. Eighteen local earthquakes were detected on short period seismograms at Syowa Station in 1990-2000. The seismicity during the period from 1990 to 2000 was lower than that from 1987 to 1989 when epicenters of local earthquakes were determined by tripartite seismic array. Local earthquake activity corroborates the crustal uplif4 which is an intermittent phenomenon. Sea level falling of 4.5 mm/y was found using data in 1975-1992. This felling rate is consistent with the geomorphological data. A route for repeat leveling survey was established in East Ongul Island. No appreciable change of sea level was observed for the last 14 years. A dynamics of the crustal uplift around Syowa Station has been discussed using geomorphological data, ocean tide, and seismic and leveling data, which is estimated to be an intermittent phenomenon. When local seismic activity is high, the crustal uplift is estimated to be going on. On the contrary, the crustal uplift is in dormancy when the local seismicity is low. Repeated leveling measurements suggest no significant changes, which further supports the idea that the crustal uplift in offshore is not a tilt trend movement but a block movement. |
---|---|
ISSN: | 1598-141X 2234-7313 |
DOI: | 10.4217/OPR.2002.24.3.249 |