Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2019, 51(3), , pp.702-708
Hauptverfasser: Saghafi, Mahdi, Ghofrani, Mohammad B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5%–100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP. Keywords: Break size estimation, Loss of coolant accident, NARX neural network, Nuclear power plants, Accident management support tools
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2018.11.017