Over expression of the wheat BEL1-like gene TaqSH1 affects floral organ abscission in Arabidopsis thaliana

Seed shattering is one of the major domestication traits of crops. In wheat, except for the Q gene whose mutation renders free threshing and changing of rachis fragility, not much is known about the molecular mechanism for this process. We report here the cloning and characterization of TaqSH1, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant biology = Singmul Hakhoe chi 2013, 56(2), , pp.98-105
Hauptverfasser: Zhang, L., Chinese Academy of Agricultural Sciences , China, Liu, D., Chinese Academy of Agricultural Sciences , China, Wang, D., Chinese Academy of Agricultural Sciences , China, Zhang, R., Chinese Academy of Agricultural Sciences , China, Geng, S., Chinese Academy of Agricultural Sciences , China, Wu, L., Chinese Academy of Agricultural Sciences , China, Li, A., Chinese Academy of Agricultural Sciences , China, Mao, L., Chinese Academy of Agricultural Sciences , China
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seed shattering is one of the major domestication traits of crops. In wheat, except for the Q gene whose mutation renders free threshing and changing of rachis fragility, not much is known about the molecular mechanism for this process. We report here the cloning and characterization of TaqSH1, the ortholog of the rice seed shattering gene qSH1. TaqSH1 encodes a BEL1-like protein that is conserved between monocots and eudicots. TaqSH1 was located on the homoeologous group 3, a potential new genetic locus for seed threshability in wheat. Over expression of TaqSH1 in Arabidopsis resulted in dwarfed plants. The inflorescences of transgenic plants were more compact with larger pedicel angles. Scanning Electron Microscopy (SEM) showed that the transgenic siliques had a narrower replum where the dehiscence zone was altered. In addition, abscission of petals was significantly delayed due to delayed abscission zone development. Real-time PCR assays showed that over expression of TaqSH1 down regulated known Arabidopsis abscission related genes IDA, HAESA, KNAT1/6 and SHP1/2 in the transgenic plants. Taken together, our data suggest that TaqSH1 may represent another example of conserved mechanisms across monocots and eudicots for fruit/grain abscission and should have potential application in genetic manipulation of wheat seed shattering.
ISSN:1226-9239
1867-0725
DOI:10.1007/s12374-012-0438-7