The relations between null geodesic curves and timelike ruled surfaces in dual Lorentzian space $\mathbb{D}_{1}^{3}

In this work, we study the conditions between null geodesic curves and timelike ruled surfaces in dual Lorentzian space. For this study, we establish a system of differential equations characterizing timelike ruled surfaces in dual Lorentzian space by using the invariant quantities of null geodesic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Honam mathematical journal 2019, 41(1), , pp.185-195
Hauptverfasser: Yasin \"{U}nl\"{u}t\"{u}rk, S\"{u}ha Y\i lmaz, Cumali Ekici
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the conditions between null geodesic curves and timelike ruled surfaces in dual Lorentzian space. For this study, we establish a system of differential equations characterizing timelike ruled surfaces in dual Lorentzian space by using the invariant quantities of null geodesic curves on the given ruled surfaces. We obtain the solutions of these systems for special cases. Regarding to these special solutions, we give some results of the relations between null geodesic curves and timelike ruled surfaces in dual Lorentzian space. KCI Citation Count: 0
ISSN:1225-293X
2288-6176