Molecular mechanisms conferring asymmetrical cross-resistance between tebufenozide and abamectin in Plutella xylostella

Based on the confirmation of asymmetrical cross-resistance between abamectin and tebufenozide in Plutella xylostella, the present work proved that the cytochrome P450 monooxygenase plays a decisive role in cross-resistance, and the expression of various cytochrome P450 (CYP450) genes in different st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Asia-Pacific entomology 2019, 22(1), , pp.189-193
Hauptverfasser: Yin, Qian, Qian, Lu, Song, Pingping, Jian, Tunyu, Han, ZhaoJun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the confirmation of asymmetrical cross-resistance between abamectin and tebufenozide in Plutella xylostella, the present work proved that the cytochrome P450 monooxygenase plays a decisive role in cross-resistance, and the expression of various cytochrome P450 (CYP450) genes in different strains was surveyed to elucidate the molecular basis of the underlying mechanisms. Enzyme analysis showed the activity of cytochrome P450 monooxygenase was notable enhanced in the strains resistant to both tebufenozide (3.07-fold) and abamectin (3.37-fold), suggesting that the enhancement of cytochrome P450 monooxygenase is the main detoxification mechanism responsible for the cross-resistance. CYP4M7 (64.58-fold) and CYP6K1 (41.97-fold) had extremely high expression levels in the Teb-R strain, selected using tebufenozide, which was highly resistant to tebufenozide (RR 185.5) and moderately cross-resistant to abamectin (RR 41.0). When this strain was subjected to further selection using abamectin, the resultant Aba-R strain showed a higher expression of CYP6K1 (60.32-fold). However, the expression of CYP4M7 was reduced (10.62-fold). Correspondingly, the Aba-R strain became more resistant to abamectin (RR 593.8) and less resistant to tebufenozide (RR 28.0). Therefore, we concluded that the over expression of CYP4M7 was the main cause for tebufenozide resistance, and that CYP6K1 mainly conferred abamectin resistance. The asymmetrical cross-resistance occurred because tebufenozide selection not only enhanced the expression of CYP4M7, but also that of CYP6K1. This is the first report on the molecular mechanism of asymmetrical cross-resistance between insecticides. [Display omitted] •The CYP450 was most relevant to the asymmetrical cross-resistance.•Over expression of CYP4M7 was the main cause for tebufenozide resistance.•Over expression of CYP6K1 mainly conferred abamectin resistance.
ISSN:1226-8615
1876-7990
DOI:10.1016/j.aspen.2018.12.015