애기장대 SHL1 단백질의 TCH4 프로모터의 특정 염기 서열 결합에 관한 연구

The Arabidopsis SHL1 (${\underline{Sh}}ort$ ${\underline{L}}ife$ 1) gene encodes a small nuclear protein that is critical for the proper expression of the developmental programs that are responsible for controlling plant stature, senescence, flowering and seed formation. The SHL1 contains a single P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant biotechnology 2018, 45(1), , pp.71-76
Hauptverfasser: 이지혜(Ji Hyea Lee), 오만호(Man-ho Oh)
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Arabidopsis SHL1 (${\underline{Sh}}ort$ ${\underline{L}}ife$ 1) gene encodes a small nuclear protein that is critical for the proper expression of the developmental programs that are responsible for controlling plant stature, senescence, flowering and seed formation. The SHL1 contains a single PHD finger domain that works in conjunction with a bromo-adjacent homology (BAH) motif that is thought to function significantly in protein-protein interactions. The TCH4 gene of the Arabidopsis encodes a xylogluclan endotransglucosylase/hydrolase that is transcriptionally regulated by a variety of hormonal and environmental stimuli. We report here in this study that the SHL1 exhibits sequence specific DNA binding properties, recognizing a 14 bp region of the TCH4 promoter in vitro, spanning nucleotides -262 to -275 (GGAAAAAACTCCCA). Chiefly, the nuclear extracts of Arabidopsis contain a protein with similar binding properties as recombinant SHL1, which is absent in identified transgenic plants that are noted as expressing antisense SHL1 RNA. Interestingly, the SHL1 gene expression with a BL treatment in characteristically wild types of seedlings showed that the transcript level of SHL1 is significantly down regulated by the BL treatment. The SHL1 may play a subtle role in regulating the kinetics of induction of the TCH4 in response to several stimuli in vivo.
ISSN:1229-2818
2384-1397