Design of the Linear Quadratic Structure Based Predictive Functional Control for Industrial Processes Against Partial Actuator Failures Using GA Optimization

This paper addresses the genetic algorithm (GA) optimization and the linear quadratic (LQ) structure based predictive functional control (PFC) for batch processes under non-repetitive unknown disturbances and partial actuator faults. First, by adopting the extended non-minimal state space (ENMSS) mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2019, Automation, and Systems, 17(3), , pp.597-605
Hauptverfasser: Hu, Xiaomin, Zou, Hongbo, Wang, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the genetic algorithm (GA) optimization and the linear quadratic (LQ) structure based predictive functional control (PFC) for batch processes under non-repetitive unknown disturbances and partial actuator faults. First, by adopting the extended non-minimal state space (ENMSS) model in which the state variables and the tracking error are united, the new state vector with more degrees is provided for the controller design. In order to enhance the ensemble control performance under the PFC structure, GA is adopted for the optimization of the weighting matrix in the controller. The case study on the injection velocity control in an injection molding machine demonstrates the effectiveness of the proposed PFC scheme against various disadvantages.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-018-0365-6