On pseudo semi-projective symmetric manifolds

In this paper we introduce a new tensor named semi-projec\-tive curvature tensor which generalizes the projective curvature tensor. First we deduce some basic geometric properties of semi-projective curvature tensor. Then we study pseudo semi-projective symmetric manifolds \linebreak $(PSPS)_{n}$ wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2018, 55(2), , pp.391-413
Hauptverfasser: Uday Chand De, Pradip Majhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce a new tensor named semi-projec\-tive curvature tensor which generalizes the projective curvature tensor. First we deduce some basic geometric properties of semi-projective curvature tensor. Then we study pseudo semi-projective symmetric manifolds \linebreak $(PSPS)_{n}$ which recover some known results of Chaki \cite{mcc3}. We provide several interesting results. Among others we prove that in a $(PSPS)_{n}$ if the associated vector field $\rho$ is a unit parallel vector field, then either the manifold reduces to a pseudosymmetric manifold or pseudo projective symmetric manifold. Moreover we deal with semi-projectively flat perfect fluid and dust fluid spacetimes respectively. As a consequence we obtain some important theorems. Next we consider the decomposability of $(PSPS)_{n}$. Finally, we construct a non-trivial Lorentzian metric of $(PSPS)_4$. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j170252