Convection-diffusion in unsteady non-Newtonian fluid flow in an annulus with wall absorption

The present study investigates the combined effects of non-Newtonian rheology and unsteady nature of the fluid on dispersion of a soluble substance between two coaxial cylinders having wall permeability at the outer wall with the flowing fluid is modelled as Casson fluid. Generalized dispersion meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Korea-Australia rheology journal 2018, 30(4), , pp.261-271
Hauptverfasser: Sebastian, Binil Thomas, Nagarani, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study investigates the combined effects of non-Newtonian rheology and unsteady nature of the fluid on dispersion of a soluble substance between two coaxial cylinders having wall permeability at the outer wall with the flowing fluid is modelled as Casson fluid. Generalized dispersion method in combination with a finite difference scheme is used to study the dispersion phenomenon. Using the generalized dispersion model, the entire process of dispersion is expressed in terms of three transport coefficients viz., absorption, convection, and dispersion (effective diffusion) coefficients. These transport coefficients are evaluated numerically using Crank-Nicolson finite difference method. The mean concentration is expressed in terms of these transport coefficients. Effects of annular gap, yield stress, Womersley frequency parameter, amplitude of the pressure pulsation, and the absorption parameter on the transport coefficients and mean concentration are studied. Flow unsteadiness is observed influencing the dispersion coefficient both quantitatively and qualitatively. It is observed that, as Womersley number increases the fluctuation of the dispersion coefficient increases and the magnitude of dispersion coefficient decreases for small values of time (< 0.5) and increases for later values of time.
ISSN:1226-119X
2093-7660
DOI:10.1007/s13367-018-0025-7