부트스트랩 샘플링 최적화를 통한 앙상블 모형의 성능 개선

앙상블 학습 기법은 개별 모형보다 더 좋은 예측 성과를 얻기 위해 다수의 분류기를 결합하는 것으로 예측 성과를 향상시키는 데에 매우 유용한 것으로 알려져 있다. 배깅은 단일 분류기의 예측 성과를 향상시키는 대표적인 앙상블 기법중의 하나이다. 배깅은 원 학습 데이터로부터 부트스트랩 샘플링 방법을 통해 서로 다른 학습 데이터를 추출하고, 각각의 부트스트랩 샘플에 대해 학습 알고리즘을 적용하여 서로 다른 다수의 기저 분류기들을 생성시키게 되며, 최종적으로 서로 다른 분류기로부터 나온 결과를 결합하게 된다. 배깅에서 부트스트랩 샘플은 원...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2016, 17(2), , pp.49-57
Hauptverfasser: 민성환, Sung-hwan Min
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:앙상블 학습 기법은 개별 모형보다 더 좋은 예측 성과를 얻기 위해 다수의 분류기를 결합하는 것으로 예측 성과를 향상시키는 데에 매우 유용한 것으로 알려져 있다. 배깅은 단일 분류기의 예측 성과를 향상시키는 대표적인 앙상블 기법중의 하나이다. 배깅은 원 학습 데이터로부터 부트스트랩 샘플링 방법을 통해 서로 다른 학습 데이터를 추출하고, 각각의 부트스트랩 샘플에 대해 학습 알고리즘을 적용하여 서로 다른 다수의 기저 분류기들을 생성시키게 되며, 최종적으로 서로 다른 분류기로부터 나온 결과를 결합하게 된다. 배깅에서 부트스트랩 샘플은 원 학습 데이터로부터 램덤하게 추출한 샘플로 각각의 부트스트랩 샘플이 동일한 정보를 가지고 있지는 않으며 이로 인해 배깅 모형의 성과는 편차가 발생하게 된다. 본 논문에서는 이와 같은 부트스트랩 샘플을 최적화함으로써 표준 배깅 앙상블의 성과를 개선시키는 새로운 방법을 제안하였다. 제안한 모형에서는 앙상블 모형의 성과를 개선시키기 위해 부트스트랩 샘플링을 최적화하였으며 이를 위해 유전자 알고리즘이 활용되었다. 본 논문에서는 제안한 모형을 국내 부도 예측 문제에 적용해 보았으며, 실험 결과 제안한 모형이 우수한 성과를 보였다. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving prediction accuracy. Bagging is one of the most popular ensemble learning techniques. Bagging has been known to be successful in increasing the accuracy of prediction of the individual classifiers. Bagging draws bootstrap samples from the training sample, applies the classifier to each bootstrap sample, and then combines the predictions of these classifiers to get the final classification result. Bootstrap samples are simple random samples selected from the original training data, so not all bootstrap samples are equally informative, due to the randomness. In this study, we proposed a new method for improving the performance of the standard bagging ensemble by optimizing bootstrap samples. A genetic algorithm is used to optimize bootstrap samples of the ensemble for improving prediction accuracy of the ensemble model. The proposed model is applied to a bankruptcy prediction problem using a real dataset from Korean companies. The experimental results showed the effectiveness of the proposed model.
ISSN:1598-0170
2287-1136