In situ Cross-linked Chitosan Composite Superfine Fiber via Electrospinning and Thermal Treatment for Supporting Palladium Catalyst
Uniform chitosan fibers (CS/PEO) with diameter of 398±76 nm were prepared by electrospinning with merely 5 wt.% of poly(ethylene oxide) (PEO) loading, and then annealed at elevated temperature without the use of additional crosslinker to improve the thermostability and solvent resistance. Swelling t...
Gespeichert in:
Veröffentlicht in: | Fibers and polymers 2018, 19(7), , pp.1463-1471 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uniform chitosan fibers (CS/PEO) with diameter of 398±76 nm were prepared by electrospinning with merely 5 wt.% of poly(ethylene oxide) (PEO) loading, and then annealed at elevated temperature without the use of additional crosslinker to improve the thermostability and solvent resistance. Swelling test shows that the CS/PEO composite fibers annealed at 200 oC were stable in 50 wt.% acetic acid aqueous solution. The mechanical strength test shows that the annealing temperature can affect the tensile strength of CS/PEO composite fiber mat. The cross-linked CS/PEO composite fibers provide a useful platform for the immobilization of palladium catalyst to catalyze the Mizoroki-Heck reactions of aromatic halides with olefins. Moreover, these CS/PEO composite fibers could be post modified with special ligands to chelate palladium species efficiently to further improve the catalytic activity and stability. |
---|---|
ISSN: | 1229-9197 1875-0052 |
DOI: | 10.1007/s12221-018-8166-3 |