Fluid Mechanical Approaches for Rational Design of Infiltrated Electrodes of Solid Oxide Fuel Cells

Infiltration-based composite electrodes are one of the most promising structures to obtain solid oxide fuel cells (SOFCs) with high performance. For a rational design of advanced composite electrodes, we report here a comprehensive model based on fluid mechanics by using the Peclet number and contac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Precision Engineering and Manufacturing-Green Technology 2019, 6(1), , pp.53-61
Hauptverfasser: Choi, Mingi, Lee, Jongseo, Lee, Wonyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infiltration-based composite electrodes are one of the most promising structures to obtain solid oxide fuel cells (SOFCs) with high performance. For a rational design of advanced composite electrodes, we report here a comprehensive model based on fluid mechanics by using the Peclet number and contact angle hysteresis to precisely control the morphologies of the infiltrated nanoparticles. Depending on the key parameter, the drying rate, three distinct morphologies—film-like coating, discrete coating, and concentrated coating—were suggested for the model and confirmed through experiments on the infiltration of the electrode material into the porous electrolyte scaffold. We believe that these results can provide an in-depth understanding of the infiltration process, which will help in arriving at simple fabrication guidelines for designing advanced nanostructures using wet chemical processes.
ISSN:2288-6206
2198-0810
DOI:10.1007/s40684-019-00021-8