Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater
Aminated cassava residue magnetic microspheres (ACRPM) were synthesized via an inverse emulsion method by using chemically modified cassava residue as a crude material, and acrylic acid (AA), acrylamide (AM), and methyl methacrylate (MMA) as monomers and a polyethylene glycol/methanol system (PEG/Me...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2019, 36(2), 227, pp.226-235 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aminated cassava residue magnetic microspheres (ACRPM) were synthesized via an inverse emulsion method by using chemically modified cassava residue as a crude material, and acrylic acid (AA), acrylamide (AM), and methyl methacrylate (MMA) as monomers and a polyethylene glycol/methanol system (PEG/MeOH) as the porogen. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N
2
adsorption-desorption and vibrating sample magnetometry (VSM) were used to characterize the ACRPM. The results indicated that amino groups were grafted to the cassava residue magnetic microspheres, and the Fe
3
O
4
nanoparticles were encapsulated in the microspheres. After porogen was added, the particle size of the ACRPM decreased from 16.5 μm to 150 nm with a pore volume of 0.05510 m
3
/g, and the specific surface area of the ACRPM increased from 3.02 to 12.34 m
2
/g. The ACRPM were superparamagnetic, and the saturation magnetization was 9.8 emu/g. The maximum adsorption capacity of Pb(II) on the ACRPM was 390 mg/g. The ACRPM exhibited a large specific surface area and provided many adsorption sites for metal ion adsorption, which favored a high adsorption capacity. Additionally, the Pb(II) adsorption process was fitted to pseudo-second-order kinetic and Langmuir isothermal adsorption models. This suggests that the Pb(II) adsorption process was dominated by a chemical reaction process and that chemisorption was the rate-controlling step during the Pb(II) removal process. In addition, the adsorbent exhibited good stability after six consecutive reuses. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-018-0190-x |