Effect of vertically varying permeability on the onset of convection in a porous medium
Considering the vertically varying permeability of a porous medium, we conducted theoretical and numerical analyses on the onset of buoyancy-driven instability in an initially quiescent, fluid-saturated, horizontal porous layer. Darcy’s law was employed to explain the fluid flow through a porous med...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2018, 35(6), 219, pp.1247-1256 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considering the vertically varying permeability of a porous medium, we conducted theoretical and numerical analyses on the onset of buoyancy-driven instability in an initially quiescent, fluid-saturated, horizontal porous layer. Darcy’s law was employed to explain the fluid flow through a porous medium and linear and nonlinear analyses are conducted. In the semi-infinite domain, the growth of disturbance and the onset of convection were analyzed with and without the quasi-steady state approximation. The present analysis of initial growth rate shows that the system is initially unconditionally stable regardless of a vertical heterogeneity parameter. The onset conditions of buoyancy-driven instabilities were investigated as a function of the Darcy-Rayleigh number and the heterogeneity parameter. To find the effect of a vertical heterogeneity on the flow after the onset of convection, nonlinear numerical simulations also were conducted using the result of the linear analysis as a starting point. Nonlinear numerical simulations show that the finger-like instability motion is not readily observable at a critical time and it becomes visible approximately when a mass transfer rate substantially increases. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-018-0045-5 |