Inhibitory Effect of Ginsenosides Rh1 and Rg2 on Oxidative Stress in LPS-Stimulated RAW 264.7 Cells

Minor ginsenosides Rh1 and Rg2 were isolated from Korean red ginseng and reported to have various biological effects on anti-inflammatory and anti-stress activities. However, the effects of Rh1 and Rg2 on antioxidant activity and their regulatory effects on the antioxidant enzymes have not been stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bacteriology and virology 2018, 48(4), , pp.156-165
Hauptverfasser: Jin, Yujin, Baek, Naehwan, Back, Soyoung, Myung, Chang-Seon, Heo, Kyung-Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minor ginsenosides Rh1 and Rg2 were isolated from Korean red ginseng and reported to have various biological effects on anti-inflammatory and anti-stress activities. However, the effects of Rh1 and Rg2 on antioxidant activity and their regulatory effects on the antioxidant enzymes have not been studied. Since oxidative stress is one of the major toxic inflammatory responses stimulated by lipopolysaccharides (LPS), the present study investigated the role of minor ginsenosides Rh1 and Rg2 on antioxidant effects in LPS-treated RAW 264.7 cells. In this study, we found that treatment with ginsenosides Rh1 and Rg2 strongly inhibited LPS-stimulated intracellular ROS production in cells. Luciferase assay showed that treatment with LPS reduced antioxidant response element (ARE) encoding the pARE-luc promoter activity, while ginsenosides inhibited the pARE-luc promoter activity. Moreover, ginsenosides Rh1 and Rg2 exhibited anti-oxidative activity in LPS-induced cells by upregulating antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Our results suggest that minor ginsenosides Rh1 and Rg2 may be potential bio-active compounds for antioxidative effects by inhibiting the generation of ROS in RAW 264.7 cells. KCI Citation Count: 0
ISSN:1598-2467
2093-0429
DOI:10.4167/jbv.2018.48.4.156