Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers

The power conversion efficiency of perovskite solar cells has reached 23.3%. Although significant developments have been made through intensive studies, the stability issue is still challenging. Passivation of perovskite solar cells with a transparent polymer provides better stability; however, ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2018, 73(11), , pp.1787-1793
Hauptverfasser: Park, Dae Young, Byun, Hye Ryung, Kim, Hyojung, Kim, Bora, Jeong, Mun Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The power conversion efficiency of perovskite solar cells has reached 23.3%. Although significant developments have been made through intensive studies, the stability issue is still challenging. Passivation of perovskite solar cells with a transparent polymer provides better stability; however, there are a few disadvantages of organic polymer such as low thermal stability, weak adhesion and the lack of water retention ability. In this work, we prepared a dual Parylene-F/C layer with 3- methacryloxypropyltrimethoxysilane, A-174, to combine the advantages of organic and inorganic materials. As a result, A-174 treated dual Parylene-F/C layer demonstrated improved passivation effects compared to a single Parylene layer due to the strong binding of Parylene and the water retention ability by SiO 2 formed from A-174. This synergetic effects can be expanded to the combination of other organic materials and organosilane compounds.
ISSN:0374-4884
1976-8524
DOI:10.3938/jkps.73.1787