Model referenced adaptive control to compensate slip-stick transition during clutch engagement

Clutches are widely used in various vehicle powertrains. The engagement process of a friction clutch has three phases, i.e., open, slipping, and sticking. Transitions between different phases introduce a discontinuity to the powertrain dynamics, which has been neglected in previous research. A model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automotive technology 2011, 12(6), , pp.913-920
Hauptverfasser: Chen, L., Xi, G., Yin, C. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clutches are widely used in various vehicle powertrains. The engagement process of a friction clutch has three phases, i.e., open, slipping, and sticking. Transitions between different phases introduce a discontinuity to the powertrain dynamics, which has been neglected in previous research. A model referenced adaptive controller (MRAC), based on Popov hyper-stability criterion, is designed to compensate the discontinuity. MRAC adjusts the frictional torque along with the errors of the state variables compared with those of a referenced model. The designed MRAC is applied to a clutch in a bus. Simulation and experimental results under fast and slow startup cases show that MRAC can simultaneously reduce vehicle jerk and frictional dissipation when compared with the conventional controller.
ISSN:1229-9138
1976-3832
DOI:10.1007/s12239-011-0104-y