Effects of work hardening models on low-cycle fatigue evaluations of coiled tubing with CT-100 steel

In the present study, low-cycle fatigue life of a coiled tubing (CT) with a CT-100 steel was evaluated by using various work hardening models. Tensile and low-cycle fatigue tests were performed, and experimental results were used to calibrate material model constants. A nonlinear finite element mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2018, 32(11), , pp.5055-5061
Hauptverfasser: Ryu, Tae-Young, Choi, Jae-Boong, Huh, Nam-Su, Kang, Soo-Chang, Kim, Ki-Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, low-cycle fatigue life of a coiled tubing (CT) with a CT-100 steel was evaluated by using various work hardening models. Tensile and low-cycle fatigue tests were performed, and experimental results were used to calibrate material model constants. A nonlinear finite element model was constructed in the ABAQUS program by using a CT fatigue test machine. During the test cycles, bending and straightening conditions were repeated and histories of strains were collected. The multiaxial low-cycle fatigue life was calculated by using Manson–Coffin relation and Tresca criterion. The kinematic and combined hardening models can be used to evaluate the fatigue life of CT, and their results are conservative compared with the fatigue test results. Results of the present study can be used as the basic data in establishing CT fatigue analysis.
ISSN:1738-494X
1976-3824
DOI:10.1007/s12206-018-1001-3