Assessment of the Progressive Collapse Resistance of Double-Layer Grid Space Structures Using Implicit and Explicit Methods

A double-layer grid space structure is a conventional long span structure used where large column-free areas are required. Due to its’ large indeterminacy and the redundancy of its structural configuration, it is normally considered in design practice, that progressive collapse will not be triggered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of steel structures 2018, 18(3), , pp.831-842
Hauptverfasser: Fu, F., Parke, G. A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A double-layer grid space structure is a conventional long span structure used where large column-free areas are required. Due to its’ large indeterminacy and the redundancy of its structural configuration, it is normally considered in design practice, that progressive collapse will not be triggered when the loss of an individual member occurs. However, research and several prior accidents have shown that progressive collapse could occur following the loss of some critical members when the structures are subject to abnormal loading such as heavy snow. To investigate the structural behavior of this type of structure, a 3D finite element model of a double-layer space structure grid was built by the authors, several collapse scenarios have been investigated using an implicit method which follows the alternative path method defined in GSA. In addition, case studies have been made using the explicit method which is to simulate the whole process of the structural collapse. In the analysis, different members failure or support collapses were studied. The response of the structure was investigated and the correspondent potential of progressive collapse was discussed in detail. Methods to mitigate the progressive collapse of this type of space structure have also been recommended.
ISSN:1598-2351
2093-6311
DOI:10.1007/s13296-018-0030-1