Jensen’s Alpha Estimation Models in Capital Asset Pricing Model

This research examined the alternatives of Jensen’s alpha (α) estimation models in the Capital Asset Pricing Model, discussed by Treynor (1961), Sharpe (1964), and Lintner (1965), using the robust maximum likelihood type m-estimator (MM estimator) and Bayes estimator with conjugate prior. According...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Asian finance, economics, and business 2018, Economics and Business , 5(3), , pp.19-29
1. Verfasser: Phuoc, Le Tan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research examined the alternatives of Jensen’s alpha (α) estimation models in the Capital Asset Pricing Model, discussed by Treynor (1961), Sharpe (1964), and Lintner (1965), using the robust maximum likelihood type m-estimator (MM estimator) and Bayes estimator with conjugate prior. According to finance literature and practices, alpha has often been estimated using ordinary least square (OLS) regression method and monthly return data set. A sample of 50 securities is randomly selected from the list of the S&P 500 index. Their daily and monthly returns were collected over a period of the last five years. This research showed that the robust MM estimator performed well better than the OLS and Bayes estimators in terms of efficiency. The Bayes estimator did not perform better than the OLS estimator as expected. Interestingly, we also found that daily return data set would give more accurate alpha estimation than monthly return data set in all three MM, OLS, and Bayes estimators. We also proposed an alternative market efficiency test with the hypothesis testing Ho: α = 0 and was able to prove the S&P 500 index is efficient, but not perfect. More important, those findings above are checked with and validated by Jackknife resampling results.
ISSN:2288-4637
2288-4645
DOI:10.13106/jafeb.2018.vol5.no3.19