Weakly $(m,n)$-closed ideals and $(m,n)$-von Neumann regular rings
Let $R$ be a commutative ring with $ 1 \neq 0$, $I$ a proper ideal of $R$, and $m$ and $n$ positive integers. In this paper, we define $I$ to be a weakly $(m,n)$-closed ideal if $ 0\neq x^{m}\in I$ for $x \in R$ implies $x^{n} \in I$, and $R$ to be an $(m,n)$-von Neumann regular ring if for every $x...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2018, 55(5), , pp.1031-1043 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $R$ be a commutative ring with $ 1 \neq 0$, $I$ a proper ideal of $R$, and $m$ and $n$ positive integers. In this paper, we define $I$ to be a weakly $(m,n)$-closed ideal if $ 0\neq x^{m}\in I$ for $x \in R$ implies $x^{n} \in I$, and $R$ to be an $(m,n)$-von Neumann regular ring if for every $x \in R$, there is an $r \in R$ such that $x^mr = x^n$. A number of results concerning weakly $(m, n)$-closed ideals and $(m,n)$-von Neumann regular rings are given. KCI Citation Count: 1 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j170342 |