Correlative and predictive models of viscosity study on Propiophenone with isomeric xylenes binary mixtures at T=(303.15 to 318.15) K
Densities and viscosities of binary mixtures of Propiophenone with o-xylene, m-xylene and p-xylene were measured over the entire composition range at T=(303.15 to 318.15) K and at 0.1Mpa atmospheric pressure. Experimental data used to calculate excess molar volume (V E ), deviation of viscosity (Δ η...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2018, 35(9), 222, pp.1919-1931 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Densities and viscosities of binary mixtures of Propiophenone with o-xylene, m-xylene and p-xylene were measured over the entire composition range at T=(303.15 to 318.15) K and at 0.1Mpa atmospheric pressure. Experimental data used to calculate excess molar volume (V
E
), deviation of viscosity (Δ
η
), excess Gibb’s free energy (G
*E
) activation of viscous flow for each binary system and the results were fitted to the Redlich-Kister polynomial equation to obtain the fitting coefficients and standard deviations. Viscosity values used to compute single adjustable interaction parameters from Grunberg and Nissan, Katti and Chaudhri, Hind et al., Tamara Kurata and Frenkel relations. Deviations in thermodynamic properties of the binary mixtures were discussed in terms of their molecular interactions between the components. Viscosity data correlated with the McAllister’s three body/four body models, Heric, Auslander, and Jouyban-Acree relations having two and three adjustable parameters for the studied binary mixtures. Viscosity relations like Kendall-Monroe, Bingham, Arrhenius, and Kendall were used to calculate and compare the standard deviation percentage, (
σ
%), between the experimental and calculated viscosity data. The studied systems showed specific intermolecular interactions and the percentage deviations were in good agreement with the experimental values. Obtained results are useful in various chemical and industrial processes. |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-018-0104-y |