Comparison of ARIMA and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics
A reliable forecasting model for each Water Treatment Plant (WTP) influent characteristics is useful for controlling the plant’s operation. In this paper Auto-Regressive Integrated Moving Average (ARIMA) and Neural Network Auto-Regressive (NNAR) modeling techniques were applied on a WTP’s influent w...
Gespeichert in:
Veröffentlicht in: | KSCE Journal of Civil Engineering 2018, 22(9), , pp.3233-3245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A reliable forecasting model for each Water Treatment Plant (WTP) influent characteristics is useful for controlling the plant’s operation. In this paper Auto-Regressive Integrated Moving Average (ARIMA) and Neural Network Auto-Regressive (NNAR) modeling techniques were applied on a WTP’s influent water characteristics time series to make some models for short-term period (to seven days ahead) forecasting. The ARIMA and NNAR models both provided acceptable generalization capability with R
2
s ranged from 0.44 to 0.91 and 0.45 to 0.92, respectively, for chloride and temperature. Although a more prediction performance was observed for NNAR in comparison with ARIMA for all studied series, the forecasting performance of models was further examined using Time Series Cross-Validation (TSCV) and Diebold-Mariano test. The results showed ARIMA is more accurate than NNAR for forecasting the horizon-daily values for CO
2
, Cl and Ca time-series. Therefore, despite of the good predictive performance of NNAR, ARIMA may still stands as better alternative for forecasting task of aforementioned series. Thus, as a general rule, not only the predictive performance using R
2
statistic but also the forecasting performance of a model using TSCV, are need to be examined and compared for selecting an appropriate forecasting model for WTP’s influent characteristics. |
---|---|
ISSN: | 1226-7988 1976-3808 |
DOI: | 10.1007/s12205-018-1195-z |