A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability

The Chebyshev collocation method in [21] to solve stiff initial-value problems is generalized by using arbitrary degrees of interpolation polynomials and arbitrary collocation points. The convergence of this generalized Chebyshev collocation method is shown to be independent of the chosen collocatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2011, 51(4), , pp.435-456
Hauptverfasser: Kim, Sang-Dong, Kwon, Jong-Kyum, Piao, Xiangfan, Kim, Phil-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Chebyshev collocation method in [21] to solve stiff initial-value problems is generalized by using arbitrary degrees of interpolation polynomials and arbitrary collocation points. The convergence of this generalized Chebyshev collocation method is shown to be independent of the chosen collocation points. It is observed how the stability region does depend on collocation points. In particular, A-stability is shown by taking the mid points of nodes as collocation points. KCI Citation Count: 1
ISSN:1225-6951
0454-8124
DOI:10.5666/KMJ.2011.51.4.435