The Polynomial Numerical Index of Lp(μ)
We show that for 1 < p < ∞, k,m ∈ N, n(k)(lp) = inf{n(k)(lm p ) : m ∈ N}and that for any positive measure μ, n(k)(Lp(μ)) ≥ n(k)(lp). We also prove that for every Q ∈ P(klp : lp) (1 < p < ∞), if v(Q) = 0, then ∥Q∥ = 0. KCI Citation Count: 0
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2013, 53(1), , pp.117-124 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that for 1 < p < ∞, k,m ∈ N, n(k)(lp) = inf{n(k)(lm p ) : m ∈ N}and that for any positive measure μ, n(k)(Lp(μ)) ≥ n(k)(lp). We also prove that for every Q ∈ P(klp : lp) (1 < p < ∞), if v(Q) = 0, then ∥Q∥ = 0. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2013.53.1.117 |