A Distance Approach for Open Information Extraction Based on Word Vector

Web-scale open information extraction (Open IE) plays an important role in NLP tasks like acquiring common-sense knowledge, learning selectional preferences and automatic text understanding. A large number of Open IE approaches have been proposed in the last decade, and the majority of these approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:KSII transactions on Internet and information systems 2018, 12(6), , pp.2470-2491
Hauptverfasser: Peiqian, Liu, Xiaojie, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Web-scale open information extraction (Open IE) plays an important role in NLP tasks like acquiring common-sense knowledge, learning selectional preferences and automatic text understanding. A large number of Open IE approaches have been proposed in the last decade, and the majority of these approaches are based on supervised learning or dependency parsing. In this paper, we present a novel method for web scale open information extraction, which employs cosine distance based on Google word vector as the confidence score of the extraction. The proposed method is a purely unsupervised learning algorithm without requiring any hand-labeled training data or dependency parse features. We also present the mathematically rigorous proof for the new method with Bayes Inference and Artificial Neural Network theory. It turns out that the proposed algorithm is equivalent to Maximum Likelihood Estimation of the joint probability distribution over the elements of the candidate extraction. The proof itself also theoretically suggests a typical usage of word vector for other NLP tasks. Experiments show that the distance-based method leads to further improvements over the newly presented Open IE systems on three benchmark datasets, in terms of effectiveness and efficiency. Keywords: open information extraction, word vector, Maximum Likelihood Estimation, Bayes Inference, natural language processing
ISSN:1976-7277
1976-7277
DOI:10.3837/tiis.2018.06.003