Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Non at Complex Space Form
Let $M$ be a real hypersurface of a complex space form with almostcontact metric structure $(\phi, \xi, \eta, g)$. In this paper, weprove that if the structure Jacobi operator $R_\xi=R(\cdot,\xi)\xi$ is$\phi\nabla_{\xi} \xi$-parallel and $R_{\xi}$ commute with thestructure tensor $\phi$, then $M$ is...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2016, 56(2), , pp.541-575 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $M$ be a real hypersurface of a complex space form with almostcontact metric structure $(\phi, \xi, \eta, g)$. In this paper, weprove that if the structure Jacobi operator $R_\xi=R(\cdot,\xi)\xi$ is$\phi\nabla_{\xi} \xi$-parallel and $R_{\xi}$ commute with thestructure tensor $\phi$, then $M$ is a homogeneous real hypersurface ofType A provided that Tr$R_{\xi}$ is constant. KCI Citation Count: 2 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2016.56.2.541 |