Derivations with Power Values on Lie Ideals in Rings and Banach Algebras

Let $R$ be a $2$-torsion free prime ring with center $Z$, $U$ be the Utumi quotient ring, $Q$ be the Martindale quotient ring of $R$, $d$ be a derivation of $R$ and $L$ be a Lie ideal of $R$. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v\in L$, where $m,n,l$ are fixed positive int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2016, 56(2), , pp.397-408
Hauptverfasser: Rehman, Nadeem ur, Muthana, Najat Mohammed, Raza, Mohd Arif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be a $2$-torsion free prime ring with center $Z$, $U$ be the Utumi quotient ring, $Q$ be the Martindale quotient ring of $R$, $d$ be a derivation of $R$ and $L$ be a Lie ideal of $R$. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v\in L$, where $m,n,l$ are fixed positive integers, then $L \subseteq Z$. We also examine the case when $R$ is a semiprime ring. Finally, as an application we apply our result to the continuous derivations on non-commutative Banach algebras. This result simultaneously generalizes a number of results in the literature. KCI Citation Count: 0
ISSN:1225-6951
0454-8124
DOI:10.5666/KMJ.2016.56.2.397