Derivations with Power Values on Lie Ideals in Rings and Banach Algebras
Let $R$ be a $2$-torsion free prime ring with center $Z$, $U$ be the Utumi quotient ring, $Q$ be the Martindale quotient ring of $R$, $d$ be a derivation of $R$ and $L$ be a Lie ideal of $R$. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v\in L$, where $m,n,l$ are fixed positive int...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2016, 56(2), , pp.397-408 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $R$ be a $2$-torsion free prime ring with center $Z$, $U$ be the Utumi quotient ring, $Q$ be the Martindale quotient ring of $R$, $d$ be a derivation of $R$ and $L$ be a Lie ideal of $R$. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v\in L$, where $m,n,l$ are fixed positive integers, then $L \subseteq Z$. We also examine the case when $R$ is a semiprime ring. Finally, as an application we apply our result to the continuous derivations on non-commutative Banach algebras. This result simultaneously generalizes a number of results in the literature. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2016.56.2.397 |