Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models
As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mat...
Gespeichert in:
Veröffentlicht in: | Journal of electrical engineering & technology 2018, 13(2), , pp.608-619 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm’s iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs. KCI Citation Count: 1 |
---|---|
ISSN: | 1975-0102 2093-7423 |
DOI: | 10.5370/JEET.2018.13.2.608 |