Predicting Length of Stay in Intensive Care Units after Cardiac Surgery: Comparison of Artificial Neural Networks and Adaptive Neuro-fuzzy System
Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analy...
Gespeichert in:
Veröffentlicht in: | Healthcare informatics research 2018, 24(2), , pp.109-117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery.
A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated.
The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60).
The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction. |
---|---|
ISSN: | 2093-3681 2093-369X |
DOI: | 10.4258/hir.2018.24.2.109 |