Structural characteristics, bioavailability and cardioprotective potential of saponins

Cardioprotective activity of saponins via different molecular targets. ▪ Cardiovascular diseases are the leading cause of death, accounting about 31% deaths globally in 2012. The major risk factors causing cardiovascular diseases are coronary atherosclerosis, hyperlipidemia, myocardial infarction, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative medicine research 2018, 7(1), 22, pp.33-43
Hauptverfasser: Singh, Deepika, Chaudhuri, Prabir Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardioprotective activity of saponins via different molecular targets. ▪ Cardiovascular diseases are the leading cause of death, accounting about 31% deaths globally in 2012. The major risk factors causing cardiovascular diseases are coronary atherosclerosis, hyperlipidemia, myocardial infarction, and stroke. The dominating cause of cardiovascular diseases is accredited to our modern lifestyle and diet. Medicinal plants have been used for the prevention and treatment of cardiovascular diseases from centuries. The in built chirality and chemical space of natural products have been playing an important role in providing leads and templates for pharmacophore synthesis. This review highlights one of the important naturally occurring class saponins and their role in cardioprotection along with structural characteristics and pharmacological effects such as antioxidant, Ca2+ ion regulation, antiapoptotic, antiatherosclerosis, antihyperlipidemic, hypocholesterolemic, angiogenic, vasodilatory, and hypotensive. The characteristic cholesterol lowering, hemolytic, and anticoagulant properties of the saponins prompted us to select as one of the natural products class for cardioprotection. This review covers the most updated information on saponins related to their cardioprotective effects, mechanism of action, bioavailability, and structure activity relationship.
ISSN:2213-4220
2213-4239
DOI:10.1016/j.imr.2018.01.003