Efffects of Fluoxetine on ATP-induced Calcium Signaling in PC12 Cells
Fluoxetine, a widely used anti-depressant compound, has several additional effects, including blockade of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells by using fura-2-based digital calcium imaging and assay for [3H]-inositol phosphate...
Gespeichert in:
Veröffentlicht in: | The Korean journal of physiology & pharmacology 2004, 8(1), , pp.57-64 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluoxetine, a widely used anti-depressant compound, has several additional effects, including blockade of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells by using fura-2-based digital calcium imaging and assay for [3H]-inositol phosphates (IPs). Treatment with ATP (100μM) for 2 min induced [Ca2+]i increases. The ATP-induced [Ca2+]i increases were significantly decreased by removal of extracellular Ca2+ and treatment with the inhibitor of endoplasmic reticulum Ca2+ ATPase thapsigargin (1μM). Treatment with fluoxetine for 5 min blocked the ATP-induced [Ca2+]i increase concentration-dependently. Treatment with fluoxetine (30μM) for 5 min blocked the ATP-induced [Ca2+]i increase following removal of extracellular Ca2+ and depletion of intracellular Ca2+ stores. While treatment with the L-type Ca2+ channel antagonist nimodipine for 10 min inhibited the ATP-induced [Ca2+]i increases significantly, treatment with fluoxetine alone blocked the ATP-induced responses. Treatment with fluoxetine also inhibited the 50 mM K+-induced [Ca2+]i increases completely. However, treatment with fluoxetine did not inhibit the ATP-induced [3H]-IPs formation. Collectively, we conclude that fluoxetine inhibits ATP-induced [Ca2+]i increases in PC12 cells by inhibiting both an influx of extracellular Ca2+ and a release of Ca2+ from intracellular stores without affecting IPs formation. KCI Citation Count: 0 |
---|---|
ISSN: | 1226-4512 2093-3827 |