Application of CUPID for subchannel-scale thermal–hydraulic analysis of pressurized water reactor core under single-phase conditions
There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal–hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2018, 50(1), , pp.54-67 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal–hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2017.09.008 |