Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition research and practice 2010, 4(3), , pp.183-190
Hauptverfasser: Senevirathne, Mahinda, Kim, Soo-Hyun, Jeon, You-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.
ISSN:1976-1457
2005-6168
DOI:10.4162/nrp.2010.4.3.183